Abstract

To establish conversion coefficients (CCs), between mean absorbed dose to the brain and eye lens of the cardiologist and the air kerma-area product, PKA, for a set of projections in cardiac interventional procedures. Furthermore, by taking clinical data into account, a method to estimate the doses per procedure, or annual dose, is presented. Thermoluminescence dosimeters (TLDs) were used together with anthropomorphic phantoms, simulating a cardiologist performing an interventional cardiac procedure, to estimate the CCs for the brain and eye lens dose for nine standard projections, and change in patient size and x-ray spectrum. Additionally, a single CC has been estimated, accounting for each projections fraction of use in the clinic and associated PKA using clinical data from the dose monitoring system in our hospital. The maximum CCs for the eye lens and segment of the brain, is 5.47 μGy/Gycm2 (left eye lens) and 1.71 μGy/Gycm2 (left brain segment). The corresponding weighted CC: s are 3.39 μGy/Gycm2 and 0.89 μGy/Gycm2 respectively. Conversion coefficients have been established under actual scatter conditions, showing higher doses on the left side of the operator. Using modern interventional x-ray equipment, interventional cardiac procedures will not cause high radiation dose levels to the operator when a ceiling mounted shield is used, otherwise there is a risk that the threshold dose values for cataract will be reached. In addition to the CCs for the different projections, methods for deriving a single CC per cardiac interventional procedure and dose per year were introduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call