Abstract

In this paper, we consider environmental boundaries that can be represented by a time-varying closed curve. We use n robots equipped with location sensors to sample the dynamic boundary. The main difficulty during the prediction process is that only n boundary points can be observed at each time step. Our approach combines finite Fourier series for shape-estimation and polynomial fitting for point tracking in time. This combination gives a continuous parametric function that describes the boundary shape and its dynamics. We validate our strategy in simulation and with experiments using actual robots. We tested on non-convex boundaries assuming noisy measurements and inaccurate motion actuators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.