Abstract

In stochastic blocking electrochemistry, microparticles generate individual current steps when they adsorb on a microelectrode and decrease the current and flux of a redox mediator reacting at the surface. The amplitude of the current step informs on particle size and landing locus, while step frequency correlates with particle transport. Here, we report a new method to estimate the average arrival velocities of single rod-shaped bacteria (bacilli). The method relies on simulating the nearby threshold distance from the surface where the bacillus no longer perturbs mediator flux and the current step approaches zero. We estimated the average velocities of bacillus arrival by dividing the threshold distance over the current step duration, a parameter that here we detect for the first time and increases with bacillus length. By comparing diffusional fluctuations to bacillus average velocity, we estimated diffusion and migration contributions as a function of bacterium size. Average arrival velocities increase with bacillus length at the same time as migration intensifies and diffusion weakens. Our analysis is universal and more effective in determining transport mode contributions than the present approach of comparing theoretical and experimental step frequencies. Uncertainty in landing locus is inconsequential because the step duration used to calculate the average arrival speed already contains such information and knowing bacillus electrophoretic mobility or ζ-potential is not needed. Additionally, by simulating and assigning edge landings to the most repeated values of current steps in a recording, we obtain bacilli lengths and widths similar to scanning electron microscopy, from which we infer landing orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.