Abstract

AbstractMethods for predicting aquifer sensitivity to contamination typically ignore geochemical factors that affect the occurrence of contaminants such as nitrate. Use of geochemical information offers a simple and accurate method for estimating aquifer sensitivity to nitrate contamination. We developed a classification method in which nitrate‐sensitive aquifers have dissolved oxygen concentrations > 1.0 mg/L, Eh values >250 mV, and either reduced iron concentrations < 0.1 mg/L or total iron concentrations < 0.7 mg/L. We tested the method in four Minnesota aquifer systems having different geochemical and hydrologic conditions. A surficial sand aquifer in central Minnesota exhibited geochemical zonation, with a rapid shift from aerobic to anaerobic conditions 5 m below the water table. A fractured bedrock aquifer in east‐central Minnesota remained aerobic to depths of 50 m, except in areas where anaerobic ground water discharged upward from an underlying aquifer. A bedrock aquifer in southeast Minnesota exhibited aerobic conditions when overlain by surficial deposits lacking shale, whereas anaerobic conditions occurred under deposits that contained shale. Surficial sand aquifers in northwest Minnesota contained high concentrations of sulfate and were anaerobic throughout their extent. Nitrate‐nitrogen was detected at concentrations exceeding 1 mg/L in 135 of 149 samples classified as sensitive. Nitrate was not detected in any of the 109 samples classified as not sensitive. We observed differences between our estimates of sensitivity and existing sensitivity maps, which are based on methods that do not consider aquifer geochemistry. Because dissolved oxygen, reduced iron, and Eh are readily measured in the field, use of geochemistry provides a quick and accurate way of assessing aquifer sensitivity to nitrate contamination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.