Abstract
We introduce an approximate dynamic factor model for modeling and forecasting large panels of realized volatilities. Since the model is estimated by means of principal components and low‐dimensional maximum likelihood, it does not suffer from the curse of dimensionality. We apply the model to a panel of 90 daily realized volatilities pertaining to S&P 100 from January 2001 to December 2008. Results show that our model is able to capture the stylized facts of panels of volatilities (comovements, clustering, long memory, dynamic volatility, skewness and heavy tails), and that it performs fairly well in forecasting, in particular in periods of turmoil, in which it outperforms standard univariate benchmarks. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.