Abstract
A recursive max-linear vector models causal dependence between its components by expressing each node variable as a max-linear function of its parental nodes in a directed acyclic graph and some exogenous innovation. Motivated by extreme value theory, innovations are assumed to have regularly varying distribution tails. We propose a scaling technique in order to determine a causal order of the node variables. All dependence parameters are then estimated from the estimated scalings. Furthermore, we prove asymptotic normality of the estimated scalings and dependence parameters based on asymptotic normality of the empirical spectral measure. Finally, we apply our structure learning and estimation algorithm to financial data and food dietary interview data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.