Abstract
We propose a numerical algorithm for solving the atmospheric dispersion problem with elevated point sources and ground-level deposition. The problem is modelled by the 3D advection-diffusion equation with delta-distribution source terms, as well as height-dependent advection speed and diffusion coefficients. We construct a finite volume scheme using a splitting approach in which the Clawpack software package is used as the advection solver and an implicit time discretization is proposed for the diffusion terms. The algorithm is then applied to an actual industrial scenario involving emissions of airborne particulates from a zinc smelter using actual wind measurements. We also address various practical considerations such as choosing appropriate methods for regularizing noisy wind data and quantifying sensitivity of the model to parameter uncertainty. Afterwards, we use the algorithm within a Bayesian framework for estimating emission rates of zinc from multiple sources over the industrial site. We compare our finite volume solver with a Gaussian plume solver within the Bayesian framework and demonstrate that the finite volume solver results in tighter uncertainty bounds on the estimated emission rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.