Abstract
With a growing emphasis on indoor air quality (IAQ) in educational environments, CO2 monitoring in classrooms has become commonplace. CO2 data can be used to estimate outdoor air change rate (ACH) based on the mass balance principle, which can be further linked to human health, performance, and building energy consumption. This study used a novel machine learning method to automatically segment CO2 concentration time series data into build-up, equilibrium, and decay periods, and then estimated classroom ACH using the corresponding CO2 mass balance equations. This method, applied to 40 classrooms in two mechanically ventilated K-6 schools, generated up to ten ACH estimates per day per classroom. A comparison with ACH calculated using the mechanical ventilation rates with 100% outdoor air reported by the building automation system during the study period reveals a slight underestimation by the decay and build-up methods, while the equilibrium method produced closer estimates. These differences may be attributed to uncertainties in occupancy, activity, CO2 emission rates, and air mixing. This research underscores the potential of leveraging CO2 data for more comprehensive IAQ assessments and highlights the challenges associated with accurately estimating ACH in real-world settings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.