Abstract

In this work, a methodology based on Fourier transform infrared (FTIR) spectroscopy and multivariate evaluation is presented to estimate the aging sensitivity of bitumen based on the unaged samples and thus without the need for time- and material-consuming aging simulations. For this purpose, factor analysis and linear discriminant analysis are used to develop a statistical model based on the FTIR spectra of unaged bitumen samples, which can be used fast and simple in everyday laboratory work and allows to assign the bitumen to a low, moderate, or strong aging sensitivity. The evaluation of the aging sensitivity is based on the complex shear modulus |G*| and the phase angle δ from the measurement with a dynamic shear rheometer (DSR), whose aging-related changes were captured as the slope in the Black diagram. A relevant influence on the classification concerning the aging sensitivity has the oxygen-containing compounds (sulfoxide, hydroxyl and partly carbonyl compounds), whereby lower contents and thus less preaged bitumen tend to have a stronger aging sensitivity. However, in addition to the oxygen-containing compounds, the structure of the aliphatic and aromatic compounds and, in particular, the interaction of the different structures are decisive for the aging sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.