Abstract

Although age-related changes of cerebral arteries were observed in in vivo magnetic resonance angiography (MRA), standard tools or methods measuring those changes were limited. In this study, we developed and evaluated a model to measure age-related changes in the cerebral arteries from 3D MRA using a 3D deep convolutional neural network. From participants without any medical abnormality, training (n = 800) and validation sets (n = 88) of 3D MRA were built. After preprocessing and data augmentation, a 3D convolutional neural network was trained to estimate each subject's chronological age from in vivo MRA data. There was good correlation between chronological age and predicted age (r = 0.83) in an independent test set (n = 354). The predicted age difference (PAD) of the test set was 2.41 ± 6.22. Interaction term between age and sex was significant for PAD (p = 0.008). After correcting for age and interaction term, men showed higher PAD (p < 0.001). Hypertension was associated with higher PAD with marginal significance (p = 0.073). We suggested that PAD might be a potential measurement of cerebral vascular aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.