Abstract

We develop and implement a technique for closed-form maximum likelihood estimation (MLE) of multifactor affine yield models. We derive closed-form approximations to likelihoods for nine Dai and Singleton (2000) affine models. Simulations show our technique very accurately approximates true (but infeasible) MLE. Using US Treasury data, we estimate nine affine yield models with different market price of risk specifications. MLE allows non-nested model comparison using likelihood ratio tests; the preferred model depends on the market price of risk. Estimation with simulated and real data suggests our technique is much closer to true MLE than Euler and quasi-maximum likelihood (QML) methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.