Abstract

The direction of arrival (DOA) of an acoustic source is a signal characteristic used by smart audio devices to enable signal enhancement algorithms. Though DOA estimations are traditionally made using a multi-microphone array, we propose that the resonant modes of a surface excited by acoustic waves contain sufficient spatial information that DOA may be estimated using a singular structural vibration sensor. In this work, sensors are affixed to an acrylic panel and used to record acoustic noise signals at various angles of incidence. From these recordings, feature vectors containing the sums of the energies in the panel’s isolated modal regions are extracted and used to train deep neural networks to estimate DOA. Experimental results show that when all 13 of the acrylic panel’s isolated modal bands are utilized, the DOA of incident acoustic waves for a broadband noise signal may be estimated by a single structural sensor to within ±5° with a reliability of 98.4%. The size of the feature set may be reduced by eliminating the resonant modes that do not have strong spatial coupling to the incident acoustic wave. Reducing the feature set to the 7 modal bands that provide the most spatial information produces a reliability of 89.7% for DOA estimates within ±5° using a single sensor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call