Abstract
The authors use previously determined direct-wave attenuation functions as well as stable, coda-derived source excitation spectra to isolate the absolute S-wave site effect for the horizontal and vertical components of weak ground motion. They used selected stations in the seismic network of the eastern Alps, and find the following: (1) all ''hard rock'' sites exhibited deamplification phenomena due to absorption at frequencies ranging between 0.5 and 12 Hz (the available bandwidth), on both the horizontal and vertical components; (2) ''hard rock'' site transfer functions showed large variability at high-frequency; (3) vertical-motion site transfer functions show strong frequency-dependence, and (4) H/V spectral ratios do not reproduce the characteristics of the true horizontal site transfer functions; (5) traditional, relative site terms obtained by using reference ''rock sites'' can be misleading in inferring the behaviors of true site transfer functions, since most rock sites have non-flat responses due to shallow heterogeneities resulting from varying degrees of weathering. They also use their stable source spectra to estimate total radiated seismic energy and compare against previous results. they find that the earthquakes in this region exhibit non-constant dynamic stress drop scaling which gives further support for a fundamental difference in rupture dynamics between small and large earthquakes. To correct the vertical and horizontal S-wave spectra for attenuation, they used detailed regional attenuation functions derived by Malagnini et al. (2002) who determined frequency-dependent geometrical spreading and Q for the region. These corrections account for the gross path effects (i.e., all distance-dependent effects), although the source and site effects are still present in the distance-corrected spectra. The main goal of this study is to isolate the absolute site effect (as a function of frequency) by removing the source spectrum (moment-rate spectrum) from the distance-corrected S-wave spectra. Typically, removing the S-wave source spectrum is difficult because of inadequate corrections for the source radiation pattern, directivity and random interference. In addition to complexities near the source, 2-D and 3-D structure beneath the recording site will result in an azimuth-dependent site effect. Since the direct wave only samples a narrow range in take-off and back-azimuth angles, multi-station averaging is needed to minimize the inherent scatter. To minimize these complicating effects, they apply the coda methodology outlined by Mayeda et al., (2003) to obtain stable moment-rate spectra. This methodology provides source amplitude and derived source spectra that are a factor of 3-to-4 times more stable than those derived from direct waves. Since the coda is commonly thought of as scattered energy that samples all ray parameters and back-azimuths, it is not very sensitive to the source radiation pattern and 3-D structure. This property makes it an excellent choice for use in obtaining average properties of the source, site and path effects in a region. Due to the characteristics of the techniques used in this study, all the inverted quantities are azimuthally averaged, since the aximuthal information is lost in the processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.