Abstract

Species-specific allometric equations that provide estimates of biomass from measured plant attributes are currently unavailable for shrubs common to South Florida pine rocklands, where fire plays an important part in shaping the structure and function of ecosystems. We developed equations to estimate total aboveground biomass and fine fuel of 10 common hardwood species in the shrub layer of pine forests of the lower Florida Keys. Many equations that related biomass categories to crown area and height were significant ( p < 0.05), but the form and variables comprising the best model varied among species. We applied the best-fit regression models to structural information from the shrub stratum in 18 plots on Big Pine Key, the most extensive pine forest in the Keys. Estimates based on species-specific equations indicated clearly that total aboveground shrub biomass and shrub fine fuel increased with time since last fire, but the relationships were non-linear. The relative proportion of biomass constituted by the major species also varied with stand age. Estimates based on mixed-species regressions differed slightly from estimates based on species-specific models, but the former could provide useful approximations in similar forests where species-specific regressions are not yet available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call