Abstract

The problem of estimating the width of a symmetric uniform distribution on the line together with the error variance, when data are measured with normal additive error, is considered. The main purpose is to analyse the maximum-likelihood (ML) estimator and to compare it with the moment-method estimator. It is shown that this two-parameter model is regular so that the ML estimator is asymptotically efficient. Necessary and sufficient conditions are given for the existence of the ML estimator. As numerical problems are known to frequently occur while computing the ML estimator in this model, useful suggestions for computing the ML estimator are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.