Abstract

Physiological signals such as neural spikes and heartbeats are discrete events in time, driven by continuous underlying systems. A recently introduced data-driven model to analyze such a system is a state-space model with point process observations, parameters of which and the underlying state sequence are simultaneously identified in a maximum likelihood setting using the expectation-maximization (EM) algorithm. In this note, we observe some simple convergence properties of such a setting, previously un-noticed. Simulations show that the likelihood is unimodal in the unknown parameters, and hence the EM iterations are always able to find the globally optimal solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.