Abstract
Abstract We propose a new method to estimate a root-directed spanning tree from extreme data. Prominent example is a river network, to be discovered from extreme flow measured at a set of stations. Our new algorithm utilizes qualitative aspects of a max-linear Bayesian network, which has been designed for modelling causality in extremes. The algorithm estimates bivariate scores and returns a root-directed spanning tree. It performs extremely well on benchmark data and on new data. We prove that the new estimator is consistent under a max-linear Bayesian network model with noise. We also assess its strengths and limitations in a small simulation study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.