Abstract
We analyze covariance matrix estimation from the perspective of market risk management, where the goal is to obtain accurate estimates of portfolio risk across essentially all portfolios—even those with small standard deviations. We propose a simple but effective visualisation tool to assess bias across a wide range of portfolios. We employ a portfolio perspective to determine covariance matrix loss functions particularly suitable for market risk management. Proper regularisation of the covariance matrix estimate significantly improves performance. These methods are applied to credit default swaps, for which covariance matrices are used to set portfolio margin requirements for central clearing. Among the methods we test, the graphical lasso estimator performs particularly well. The graphical lasso and a hierarchical clustering estimator also yield economically meaningful representations of market structure through a graphical model and a hierarchy, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.