Abstract

We construct a mathematical model describing thermomechanical interaction between composite structure elements (isotropic particles of the matrix and anisotropic short fibers) and the macroscopically isotropic elastic medium with desired thermoelastic characteristics. At the first stage of this model, the self-consistency method is used to obtain relations determining the elasticity moduli of the composite, and at the second stage, the model permits determining its linear thermal expansion coefficient. The dual variational statement of the linear thermoelasticity problem in an inhomogeneous solid permits obtaining two-sided estimates for the bulk elasticity modulus, shear modulus, and linear thermal expansion coefficient of the composite under study. The calculated dependencies presented in the paper permit predicting the thermoelastic characteristics of a composite reinforced by anisotropic short fibers (including those in the form of nanostructure elements).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.