Abstract
We apply a computational technique to retrieve the wave aberration of the eye from the point-spread function obtained from pairs of double-pass retinal images. The method consists of an adapted pyramidal version of a nonlinear least-squares fitting procedure to a wave aberration expressed as an expansion in Zernike polynomials. Although the procedure provides accurate estimates of the wave aberration, it presents several drawbacks that are discussed in detail. In particular, since a great deal of computational time is necessary to retrieve a single wave aberration, this technique is not useful for real-time applications. We present results of wave aberrations in five normal subjects in the fovea for a 4-mm-pupil diameter. In every case there is a clear presence of comalike aberrations, while the third-order spherical aberration is usually smaller than previous estimates. The root-mean-square error in the retrieved wave aberration, when defocus and astigmatism were corrected, ranges from 0.24 to 0.5 wavelength. The particular values of the aberration coefficients present a large intersubject variability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.