Abstract
This paper considers a generalization of the Rényi theorem to the case of a structural distribution with a scale parameter. In terms of the zeta metric, some estimates of the convergence rate in the generalized Rényi theorem are obtained when the structural mixed Poisson distribution of the summation index is a scale mixture of the generalized gamma distribution. Estimates of the convergence rate for the structural digamma distribution are given as a special case. The paper extends the results previously obtained for the generalized gamma distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.