Abstract
Radar remote sensing data provide a unique perspective on the Earth's crust and the processes that have influenced its evolution. Physically based models are required, however, to relate the geophysical quantities being measured by the radar sensor to useful geologic information. Synthetic aperture radar (SAR) data over the Cima volcanic field in the Mojave Desert of California are quantitatively connected with microtopography through inversion of a radar backscatter model. Changes in surface roughness inferred from the derived microtopography are modeled and found to be consistent with aeolian mantling as surfaces age. Estimated rates of aeolian deposition for the Cima area are compared to the Lunar Crater volcanic field in Nevada. Rates of deposition appear to be higher at Cima volcanic field, most likely because of its proximity to Soda Lake, the main source of the aeolian material.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.