Abstract

In drug development, it sometimes occurs that a new drug does not demonstrate effectiveness for the full study population but appears to be beneficial in a relevant subgroup. In case the subgroup of interest was not part of a confirmatory testing strategy, the inflation of the overall type I error is substantial and therefore such a subgroup analysis finding can only be seen as exploratory at best. To support such exploratory findings, an appropriate replication of the subgroup finding should be undertaken in a new trial. We should, however, be reasonably confident in the observed treatment effect size to be able to use this estimate in a replication trial in the subpopulation of interest. We were therefore interested in evaluating the bias of the estimate of the subgroup treatment effect, after selection based on significance for the subgroup in an overall "failed" trial. Different scenarios, involving continuous as well as dichotomous outcomes, were investigated via simulation studies. It is shown that the bias associated with subgroup findings in overall nonsignificant clinical trials is on average large and varies substantially across plausible scenarios. This renders the subgroup treatment estimate from the original trial of limited value to design the replication trial. An empirical Bayesian shrinkage method is suggested to minimize this overestimation. The proposed estimator appears to offer either a good or a conservative correction to the observed subgroup treatment effect hence provides a more reliable subgroup treatment effect estimate for adequate planning of future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call