Abstract

We consider a Rosenzweig–MacArthur predator-prey system which incorporates logistic growth of the prey in the absence of predators and a Holling type II functional response for interaction between predators and preys. We assume that parameters take values in a range which guarantees that all solutions tend to a unique limit cycle and prove estimates for the maximal and minimal predator and prey population densities of this cycle. Our estimates are simple functions of the model parameters and hold for cases when the cycle exhibits small predator and prey abundances and large amplitudes. The proof consists of constructions of several Lyapunov-type functions and derivation of a large number of non-trivial estimates which are of independent interest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call