Abstract

The paper is devoted to the study of one class of Euclidean combinatorial optimization problems — combinatorial optimization problems on the general set of arrangements with linear fractional objective function and without additional (non-combinatorial) constraints. The paper substantiates the improvement of the polynomial algorithm for solving the specified class of problems. This algorithm foresees solving a finite sequence of linear unconstrained problems of combinatorial optimization on arrangements. The modification of the algorithm is based on the use of estimates of the objective function on the feasible set. This allows to exclude some of the problems from consideration and reduce the number of problems to be solved. The numerical experiments confirm the practical efficiency of the proposed approach.

Highlights

  • Постановка задачіВикористовуватимемо термінологію з [3] стосовно евклідових задач комбінаторної оптимізації

  • The paper substantiates the improvement of the polynomial algorithm

  • This algorithm foresees solving a finite sequence of linear unconstrained problems of combinatorial optimization

Read more

Summary

Постановка задачі

Використовуватимемо термінологію з [3] стосовно евклідових задач комбінаторної оптимізації. Під мультимножиною розуміємо сукупність елементів, серед яких можуть бути однакові. Вважатимемо, що елементи мультимножини впорядковані за неспаданням

C D x x
Використання оцінок цільової функції
Результати числових експериментів

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.