Abstract

Abstract The dissipation of kinetic energy at the surface of natural water bodies has important consequences for many Physical and biochemical processes including wave dynamics, gas transfer, mixing of nutrients and pollutants, and photosynthetic efficiency of plankton. Measurements of dissipation close to the surface obtained in a large lake under conditions of strong wind forcing are presented that show a layer of enhanced dissipation exceeding wall layer values by one or two orders of magnitude. The authors propose a scaling for the rate of dissipation based on wind and wave parameters, and conclude that the dissipation rate under breaking waves depends on depth, to varying degrees, in three stages. Very near the surface, within one significant height, the dissipation rate is high (an order of magnitude greater than that predicted by wall layer theory) and roughly constant. Below this is an intermediate region where the dissipation decays as z−2. The thickness of this layer (relative to the significant...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.