Abstract

This work uses 194 outdoor particle size distributions (PSDs) from the literature to estimate single-pass heating, ventilating, and air-conditioning (HVAC) filter removal efficiencies for PM2.5 and ultrafine particles (UFPs: <100 nm) of outdoor origin. The PSDs were first fitted to tri-modal lognormal distributions and then mapped to size-resolved particle removal efficiency of a wide range of HVAC filters identified in the literature. Filters included those with a minimum efficiency reporting value (MERV) of 5, 6, 7, 8, 10, 12, 14, and 16, as well as HEPA filters. We demonstrate that although the MERV metric defined in ASHRAE Standard 52.2 does not explicitly account for UFP or PM2.5 removal efficiency, estimates of filtration efficiency for both size fractions increased with increasing MERV. Our results also indicate that outdoor PSD characteristics and assumptions for particle density and typical size-resolved infiltration factors (in the absence of HVAC filtration) do not drastically impact estimates of HVAC filter removal efficiencies for PM2.5. The impact of these factors is greater for UFPs; however, they are also somewhat predictable. Despite these findings, our results also suggest that MERV alone cannot always be used to predict UFP or PM2.5 removal efficiency given the various size-resolved removal efficiencies of different makes and models, particularly for MERV 7 and MERV 12 filters. This information improves knowledge of how the MERV designation relates to PM2.5 and UFP removal efficiency for indoor particles of outdoor origin. Results can be used to simplify indoor air quality modeling efforts and inform standards and guidelines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.