Abstract

In this paper we present new heat kernel upper bounds for a certain class of non-local regular Dirichlet forms on metric measure spaces, including fractal spaces. We use a new purely analytic method where one of the main tools is the parabolic maximum principle. We deduce an off-diagonal upper bound of the heat kernel from the on-diagonal one under the volume regularity hypothesis, restriction of the jump kernel and the survival hypothesis. As an application, we obtain two-sided estimates of heat kernels for non-local regular Dirichlet forms with finite effective resistance, including settings with the walk dimension greater than 2 2 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.