Abstract
Abstract This article reports and discusses the application of an analysis of reservoir greenhouse gas (GHG) emission using the net emission approach (difference between post-impoundment and pre-impoundment emissions) to assessments of GHG emissions from hydropower reservoirs compared with GHG emissions from thermal plants producing electrical energy. Reservoirs were chosen from a representative set of different Brazilian biomes and climatic regimes. A field campaign program was performed between 2011 and 2013 to estimate net GHGs emissions from 8 Brazilian representative hydropower plants. Four field campaigns to each hydropower plant were scheduled within two-month intervals to measure CH 4 , CO 2 and N 2 O diffusive fluxes on air-water interfaces (reservoir surface area and downstream river, CH 4 and CO 2 ebullitive fluxes on the air-water interfaces of the reservoir and degassing rates at powerhouse turbines). Permanent carbon burial rates were also measured in the reservoirs. Statistical analyses of the data were representative of post-impoundment annual values for GHG emissions for each pathway and for permanent carbon burial rates. Values for pre-impoundment representative annual GHG emission were calculated taking into account previous land cover mapping data from the period of the creation of the reservoir, and reference GHG flux values established by the literature for each land cover class. To compare with thermopower generation, annual values obtained were expressed as GHG intensity in g of CO 2 eq.kWh −1 considering a Global Warming Potential value for 100 years; the factor 44/12 was considered as the permanent carbon burial rate necessary to transform carbon into carbon dioxide; and production of plant firm energy was also considered. Annual net GHG emissions estimates were expressed as GHG intensity in g of CO 2 eq kWh −1 . In all cases analyzed, hydroelectric plants emit less greenhouse gases than natural gas and coal-fired thermoelectric plants. The exception was the Balbina hydroelectric dam, which has a low annual power generation and a very large reservoir: it emits more gas per unit of energy than the two thermoelectric plants abovementioned.
Full Text
Topics from this Paper
Greenhouse Gas Emissions
Greenhouse Gas Intensity
Estimates Of Greenhouse Gas Emissions
Annual Greenhouse Gas Emission
Net Greenhouse Gas Emissions
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Joule
Oct 1, 2020
iScience
Feb 1, 2023
Livestock Science
Dec 1, 2021
iScience
Feb 1, 2022
Dec 1, 2013
Energy
May 1, 2015
Molecular Plant
Sep 1, 2022
One Earth
Dec 1, 2021
Climatic Change
Nov 17, 2021
Journal of Cleaner Production
Dec 1, 2020
Journal of Cleaner Production
Jul 1, 2019
PLOS Medicine
Jul 10, 2018
Journal of Agricultural and Applied Economics
Aug 1, 2011
Procedia Food Science
Jan 1, 2016
Livestock Science
Aug 1, 2012
Energy
Energy
Nov 1, 2023
Energy
Nov 1, 2023
Energy
Nov 1, 2023
Energy
Nov 1, 2023
Energy
Nov 1, 2023
Energy
Nov 1, 2023
Energy
Nov 1, 2023
Energy
Nov 1, 2023
Energy
Nov 1, 2023