Abstract

Together with the avoidance of any negative impact of inbreeding, preservation of genetic variability for life-history traits that could undergo future selective pressure is a major issue in endangered species management programmes. However, most of these programmes ignore that, apart from the direct action of genes on such traits, parents, as contributors of offspring environment, can influence offspring performance through indirect parental effects (when parental genotype and phenotype exerts environmental influences on offspring phenotype independently of additive genetic effects). Using quantitative genetic models, we estimated the additive genetic variance for juvenile survival in a population of the endangered Cuvier's gazelle kept in captivity since 1975. The dataset analyzed included performance recording for 700 calves and a total pedigree of 740 individuals. Results indicated that in this population juvenile survival harbors significant additive genetic variance. The estimates of heritability obtained were in general moderate (0.115–0.457) and not affected by the inclusion of inbreeding in the models. Maternal genetic contribution to juvenile survival seems to be of major importance in this gazelle's population as well. Indirect genetic and indirect environmental effects assigned to mothers (i.e., maternal genetic and maternal permanent environmental effects) roughly explain a quarter of the total variance estimated for the trait analyzed. These findings have major evolutionary consequences for the species as show that offspring phenotypes can evolve strictly through changes in the environment provided by mothers. They are also relevant for the captive breeding programme of the species. To take into account, the contribution that mothers have on offspring phenotype through indirect genetic effects when designing pairing strategies might serve to identify those females with better ability to recruit, and, additionally, to predict reliable responses to selection in the captive population.

Highlights

  • Juvenile survival is a critical component of population dynamics

  • We quantified the genetic basis of juvenile survival in a captive population of the endangered Cuvier’s gazelle

  • 0.36, which suggests that a non-negligible phenotypic variation observed in this fitness trait is ascribed to additive genetic variance

Read more

Summary

Introduction

In endangered species managed through captive breeding programmes, the survival of juveniles is crucial for population viability. These conservation programmes focus mainly on the preservation of genetic variability to avoid any negative impact of inbreeding. Management of endangered species in captivity tends to minimize mating between relatives to maximize individual fitness and maintain population viability in the long term. This procedure assumes that the improvement of fitness or the threats to fitness are only determined by the probability of individuals carrying identical alleles by descent in a given gene.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.