Abstract

In this paper, we continue the study of approximative characteristics of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of several variables whose majorant of the mixed moduli of continuity contains both exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojective widths of the classes $B^{\Omega}_{p,\theta}$ in the space $L_{q},$ $1\leq p<q<\infty,$ and also establish the exact-order estimates of approximation for these classes of functions in the space $L_{q}$ by using linear operators satisfying certain conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.