Abstract
Generalized cross-validation (GCV) is a popular tool for specifying the tuning parameter in linear regression model or equivalently the regularization parameter in Tikhonov regularization. In this work, we are concerned with the estimation and minimization of the GCV function by using a combination of an extrapolation procedure and a statistical approach. In particular, we derive families of estimates for the GCV function. By minimizing the estimated GCV function over a grid of values, a GCV estimate of the regularization parameter is achieved. We present several numerical examples to illustrate the effectiveness of the derived families of estimates for approximating the regularization parameter for several linear discrete ill-posed problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.