Abstract

We study the convergence rate of biorthogonal expansions of functions in series in systems of root functions of a broad class of second-order ordinary differential operators on a finite interval. The above-mentioned expansions are compared with the expansions of the same functions in trigonometric Fourier series in an integral or uniform metric on any interior compact set of the basic interval and on the entire interval. We prove the dependence of the equiconvergence rate of the expansions in question on the distance from the compact set to the boundary of the interval, on the coefficients of the differential operation, and on the presence of infinitely many associated functions in the system of root functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.