Abstract

We discuss the work of Birman and Solomyak on the singular numbers of integral operators from the point of view of modern approximation theory, in particular, with the use of wavelet techniques. We are able to provide a simple proof of norm estimates for integral operators with kernel in $$B^{1/p-1/2}_{p,p}(\mathbb R,L_2(\mathbb R))$$ . This recovers, extends, and sheds new light on a theorem of Birman and Solomyak. We also use these techniques to provide a simple proof of Schur multiplier bounds for double operator integrals with bounded symbol in $$B^{1/p-1/2}_{2p/(2-p),p}(\mathbb R,L_\infty(\mathbb R))$$ , which extends Birman and Solomyak’s result to symbols without compact domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.