Abstract
In this paper we study eigenvalues of the poly-Laplacian with any order on a domain in an n-dimensional unit sphere and obtain estimates for eigenvalues. In particular, the optimal result of Cheng and Yang (Math Ann 331:445–460, 2005) is included in our ones. In order to prove our results, we introduce 2(l + 1) functions ai and bi, for i = 0, 1, . . . , l and two operators μ and η. First of all, we study properties of functions ai and bi and the operators μ and η. By making use of these properties and introducing k free constants, we obtain estimates for eigenvalues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Calculus of Variations and Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.