Abstract
Some models for axially moving orthotropic thin plates are investigated analytically via methods of complex analysis to derive estimates for critical plate velocities. The linearized Kirchhoff plate theory is used, and the energy forms of steady-state models are considered with homogeneous and inhomogeneous tension profiles in the cross direction of the plate. With the help of the energy forms, some limits for the divergence velocity of the plate are found analytically. In numerical examples, the derived lower limits for the divergence velocity are analyzed for plates with small flexural rigidity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.