Abstract

The road infrastructure is considered to be a key prerequisite of social and economic development of any country and therefore solutions that assist in the management and maintenance of this key infrastructure are important. This paper presents the application of Machine Learning algorithms, such as Multilayer Perceptron Neural Network and K-means for estimating the level of services required for highway conservation in Brazil. The data used is from the Federal District highways, recorded in the form of Service Orders in the Road Administration System, as well as the road solutions catalog elaborated from the price table of the Federal District Roads Department. A database was created containing data for routine maintenance history, road solutions catalog and price lists. The machine learning algorithms were applied and evaluated, and it was concluded that the K-means algorithm had the best performance for estimating the maintenance costs of Brazilian highways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.