Abstract

Canine hip dysplasia (CHD) is a serious and common musculoskeletal disease of pedigree dogs and therefore represents both an important welfare concern and an imperative breeding priority. The typical heritability estimates for radiographic CHD traits suggest that the accuracy of breeding dog selection could be substantially improved by the use of estimated breeding values (EBVs) in place of selection based on phenotypes of individuals. The British Veterinary Association/Kennel Club scoring method is a complex measure composed of nine bilateral ordinal traits, intended to evaluate both early and late dysplastic changes. However, the ordinal nature of the traits may represent a technical challenge for calculation of EBVs using linear methods. The purpose of the current study was to calculate EBVs of British Veterinary Association/Kennel Club traits in the Australian population of German Shepherd Dogs, using linear (both as individual traits and a summed phenotype), binary and ordinal methods to determine the optimal method for EBV calculation. Ordinal EBVs correlated well with linear EBVs (r = 0.90–0.99) and somewhat well with EBVs for the sum of the individual traits (r = 0.58–0.92). Correlation of ordinal and binary EBVs varied widely (r = 0.24–0.99) depending on the trait and cut-point considered. The ordinal EBVs have increased accuracy (0.48–0.69) of selection compared with accuracies from individual phenotype-based selection (0.40–0.52). Despite the high correlations between linear and ordinal EBVs, the underlying relationship between EBVs calculated by the two methods was not always linear, leading us to suggest that ordinal models should be used wherever possible. As the population of German Shepherd Dogs which was studied was purportedly under selection for the traits studied, we examined the EBVs for evidence of a genetic trend in these traits and found substantial genetic improvement over time. This study suggests the use of ordinal EBVs could increase the rate of genetic improvement in this population.

Highlights

  • Canine hip dysplasia (CHD) has been reported to be the one of the most prevalent musculoskeletal disorders of the dog [1]

  • Data Two sources of CHD data were used in this study, namely data accumulated by Dr Malcolm Willis in the United Kingdom from records collected within the Australian Veterinary Association/ Australian National Kennel Council (AVA/ANKC) canine hip and elbow dysplasia scheme (CHEDS) and the records of radiologists sent to him privately; and data supplied by the German Shepherd Dog Council of Australia (GSDCA) hip dysplasia breed scheme

  • Ordinal estimated breeding values (EBVs) Because this methodology most correctly reflects the underlying nature of the data, these EBVs were considered the standard for comparison

Read more

Summary

Introduction

Canine hip dysplasia (CHD) has been reported to be the one of the most prevalent musculoskeletal disorders of the dog [1]. It is a developmental disorder of the coxo-femoral joint in which excessive looseness and malcongruency of the joint structures leads in many cases to debilitating osteoarthritis in one or both hips [2,3,4]. Most schemes involve determination of phenotypes from radiographic examination of the hips. The specific CHD phenotype measured, the positioning and sedation of the dog for radiography, and the age at which dogs are eligible for scoring, vary among schemes

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call