Abstract

Hydraulic jumps are induced in hydraulic facilities for the purposes of energy dissipation or flow aeration. Presently there is no means for a simple estimate of void fraction distribution and air entrainment flux, without detailed physical modelling. This paper presents a semi-theoretical model to simulate the void fraction and velocity distributions in hydraulic jumps characterized by partially-developed inflow conditions. Relationships were established between the inflow Froude number, jump roller length and key parameters that determine the full expression of void fraction and velocity profiles. The proposed model enables accurate prediction of void fraction, longitudinal velocity, and air flux using the inflow Froude number. The results indicated considerable air flux contribution of free-surface aeration, in addition to the singular air entrainment at the jump toe, for moderate to large Froude numbers. A Froude number between 8 and 9 tended to achieve highest aeration rate with maximum total air flux in the roller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.