Abstract

Disordered non-interacting systems are classified into ten symmetry classes, with the unitary class being the most fundamental. The three and four dimensional unitary universality classes are attracting renewed interest because of their relation to three dimensional Weyl semi-metals and four dimensional topological insulators. Determining the critical exponent of the correlation/localistion length for the Anderson transition in these classes is important both theoretically and experimentally. Using the transfer matrix technique, we report numerical estimations of the critical exponent in a U(1) model in three and four dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.