Abstract

Results of studying how the initial distribution of the laser beam field affects the change in the effective width of the beam in the process of its propagation in a turbulent atmosphere are presented. The investigations are carried out using the method of streamlines of the average Poynting vector for axisymmetric light beams. The effective beam width in the receiving plane is studied depending on the shape of the initial intensity distribution and presence of the phase dislocation in the initial field. It is shown that parameters of ring and vortex beams can be chosen such that their effective width in the receiving plane will be less than for a Gaussian beam with the same initial effective width in the process of laser radiation propagation in a turbulent atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call