Abstract
Radiolocation methods of probing minor celestial bodies (asteroids) by the nanosecond pulses can be used for monitoring of near-Earth space with the purpose of identification of hazardous cosmic objects able to impact the Earth.Development of the methods that allow us to improve the accuracy of determining the asteroids size (i.e. whether it measures tens or hundreds meters in diameter) is important for correctly estimating the degree of damage which they can cause (either regional or global catastrophes, respectively). In this paper we suggest a novel method of estimating the sizes of the passive cosmic objects using the radiolocation probing by ultra-high-resolution nanosecond signals to obtain radar signatures. The modulation envelope of the reflected signal, which is a radar portrait of the cosmic object, is subjected to time scale transformation to carrier Doppler frequency by means of radioimpulse strobing. The shift of a strobe within the probing period will be performed by radial motion of the object which will allow us to forgo the special autoshift circuit used in the oscillographic technical equipment.The measured values of duration of radiolocation portrait can be used to estimate the mean radius of the object by using the average spatial length of the portrait. The method makes it possible to appraise the sizes of cosmic objects through their radiolocation portrait duration, with accuracy that is independent of the objects range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.