Abstract
Local instability index of unstable solutions to single partial differential equations (PDEs) by a local minimax method (LMMM) was established in Zhou (2005). It is known that the local min-orthogonal method (LMOM) which was first proposed in Zhou (2004) and then further developed in Chen et al. (2008) can find more general unstable solutions to both single PDEs and cooperative elliptic systems. This paper is to carry out instability analysis of unstable solutions by LMOM, to which an infinite-dimensional functional space can be decomposed as a direct sum of a finite-dimensional subspace and its orthogonal complement. A Morse index approach is developed to show that with LMOM, instability behavior of a solution in such infinite-dimensional complement subspace can be totally determined. Usual instability analysis in an entire space is then reduced to analysis in its finite-dimensional subspace, for which a corresponding matrix decomposition is proposed to analyze a solution’s instability behavior. Estimates of Morse index are also established. Finally, numerical examples of both 2- and 3-component cooperative systems arising in nonlinear optics are carried out for spatial vector solitons, whose local instabilities are numerically confirmed by the new estimates. Certain important properties of the examples are also verified or presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.