Abstract

Heating and current drive systems such as high energy Neutral Beam Injection (NBI) are being considered for pulsed EU DEMO (“DEMO1”) pre-conceptual design. Their aim is to provide auxiliary power, not only during flat-top, but also during transient phases (i.e. plasma current ramp-up and ramp-down).In this work, NBI fast particle power loads on DEMO1 first wall, due to shine-through and orbit losses, are calculated for the diverted plasma ramp-up phase. Numerical simulations are performed using BBNBI and ASCOT Monte Carlo codes. The simulations have been done using a complete 3D wall geometry, and implementing the latest DEMO NBI design, which foresees NBI at 800 keV particle energy. Location and power density of NBI-related power loads at different ramp-up time steps are evaluated and compared with the maximum tolerable heat flux taken from ITER case. Since NBI shine-through losses (dominant during low density phases) depend mainly on the beam energy, plasma density and volume, DEMO has a more favourable situation than ITER, enlarging NBI operational window. Using ITER criteria, DEMO NBI at full energy and power could be switched on during ramp-up at <ne> ~ 1.3 × 1019 m-3. This increases the appeal of neutral beam injectors as auxiliary power systems for DEMO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call