Abstract

We consider the nonlinear Lienard equation \(\ddot x\left( t \right) + f\left( x \right)\dot x\left( t \right) + g\left( x \right) = 0\). Lienard obtained sufficient conditions on the functions f(x) and g(x) under which this equation has a unique stable limit cycle. Under additional conditions, we prove a theorem that permits one to estimate the amplitude (the maximum value of x) of this limit cycle from above. The theorem is used to estimate the amplitude of the limit cycle of the van der Pol equation \(\ddot x\left( t \right) + \mu \left[ {{x^2}\left( t \right) - 1} \right]\dot x\left( t \right) + x\left( t \right) = 0\).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.