Abstract

The Poisson hidden Markov model is a model that consists of two parts. The first part is the cause of events that are hidden or cannot be observed directly and form a Markov chain, while the second part is the process of observation or observable parts that depend on the cause of the event and following the Poisson distribution. The Poisson hidden Markov model parameters are estimated using the Maximum Likelihood Estimator (MLE). But it is difficult to find analytical solutions from the ln-likelihood function. Therefore, the Expectation Maximization (EM) algorithm is used to obtain its numerical solutions which are then applied to life insurance data. The best model is obtained with 2 states or m = 2 based on the smallest Bayesian Information Criterion (BIC) value of 338,778 and the average predicted number of claims arrivals is 0.385 per day.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.