Abstract

In this study, two tigliane diterpenoids, 12-deoxyphorbol-13-hexadecanoate and 12-deoxyphorbol-13-acetate (prostratin), were identified from the methanol extract of the roots of Euphorbia fischeriana and were found to have the ability to significantly reduce the survival of Caenorhabditis elegans. It was determined that exposure to these two compounds had toxic effects on the growth, reproduction, locomotion behavior, and accumulation of lipids and lipofuscin of the nematodes. Moreover, the transcription levels of the genes associated with lipid accumulation, apoptosis, insulin, and nuclear hormone synthesis in C. elegans were significantly influenced. Interestingly, 12-deoxyphorbol-13-hexadecanoate produced exposure toxicity at lower concentrations than that of prostratin. Pearson correlation analysis indicates that the elevated exposure toxicity of 12-deoxyphorbol-13-hexadecanoate may be the result of differing transcription levels, which result from the differential expression of fat-6, egl-38, and cep-1. These results reveal that esterification with a long-chain fatty acid elevates the exposure toxicity of this tigliane diterpenoid, thus providing a basis for the application of tigliane diterpenoids in plant-derived nematicides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call