Abstract

Kinetic data are reported regarding the esterification of 1,4-dichlorobutane with sodium formate catalyzed by quaternary ammonium salts as a model for reactions in series, under solid–liquid phase transfer conditions. The process was found to follow a consecutive first-order mechanism of the general type A → R → S. The reactivity of the quaternary ammonium salts with regard to the counteranion was Cl− > Br− > 1− > HSO4−. The reaction rate was linearly dependent on catalyst concentration up to 12 mol% of catalyst relative to the substrate. Above this concentration the rate was constant and independent of the amount of the catalyst. The activation energy of the two consecutive steps was found to be similar (21 kcal/mol). Therefore, the product distribution (R/S) is not appreciably affected by temperature. A mechanism termed "Thin aqueous boundary layer" is suggested for nucleophilic displacement reactions under solid–liquid phase transfer conditions. Keywords: phase transfer catalysis, series reactions, kinetic study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.