Abstract
Although known for their inferiority as hydrogen-bonding acceptors when compared to amides, esters are often found at the C-terminus of peptides and synthetic oligomers (foldamers), presumably due to the synthetic readiness with which they are obtained using protected peptide coupling, deploying amino acid esters at the C-terminus. When the H-bonding interactions deviate from regularity at the termini, peptide chains tend to "fray apart". However, the individual contributions of C-terminal esters in causing peptide chain end-fraying goes often unnoticed, particularly due to diverse competing effects emanating from large peptide chains. Herein, we describe a striking case of a comparison of the individual contributions of C-terminal ester vs. amide carbonyl as a H-bonding acceptor in the folding of a peptide. A simple two-residue peptide fold has been used as a testing case to demonstrate that amide carbonyl is far superior to ester carbonyl in promoting peptide folding, alienating end-fraying. This finding would have a bearing on the fundamental understanding of the individual contributions of stabilizing/destabilizing non-covalent interactions in peptide folding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.