Abstract

Abstract Interchange reactions involving esters were used in reactive processing with a view to obtaining polymer blends with stabilized morphology. Dibutyltinoxide (DBTO) appeared to be an excellent catalyst for these reactions. In fact, it was shown that the true catalytic entity is a dimeric alkoxy, acyloxy distannoxane entity formed in situ, during processing, by the reaction of the DBTO with the polymer ester groups. This compound was first obtained with model esters and characterized by multinuclear NMR analysis (1H, 13C, 119Sn). The catalytic efficiency of the in situ polymeric distannoxane was compared with other added parent distannoxanes. Later on – still with model compounds – ligand exchanges at the tin sites were investigated and it was shown that these exchanges are not essential to the catalyst activity, but when they take place it increases the catalytic efficiency. Then, this type of catalysis was successfully used for interchange reactions in reactive extrusion of different polymer blends, some applications are briefly presented. To cite this article: M.-F. Llauro and A. Michel, C. R. Chimie 9 (2006).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call